Pengenalan Karakter Anak Untuk Mengenali Potensi Berdasarkan Sinyal Fisiologi Menggunakan K-Nearest Neighbors Classifier

Sukenda Sukenda, Eka Angga L, M. Kohar

Abstract


Perkembangan teknologi informasi mulai diterapkan di bidang psikologi, salah satu contohnya adalah aplikasi yang digunakan untuk pengenalan emosi. Pada dasarnya, proses pengenalan emosi dapat dilakukan melalui beberapa cara yaitu penulisan (text), sinyal fisiologi, ekspresi wajah, intonasi suara, dan gerak tubuh. Akan tetapi, ada kemungkinan ekspresi wajah, tulisan tangan, intonasi suara dan gerak tubuh bisa dimanipulasi, sehingga membuat pengenalan emosi menjadi kurang valid. Pengenalan emosi melalui sinyal fisiologi lebih representatif dan mampu memberikan hasil yang lebih objektif karena sinyal fisiologi tidak dapat dikontrol secara sadar oleh penggunanya sendiri. Sinyal fisiologi yang dapat digunakan untuk mengenali emosi adalah detak jantung dan respon dari konduktansi kulit. Untuk dapat melakukan pengenalan emosi berdasarkan sinyal fisiologi ini dilakukan dengan membangun sebuah sistem aplikasi. Sistem aplikasi ini, terdiri dari dua unit utama yaitu unit hardware dan unit software. Unit hardware terdiri dari dua sensor yaitu sensor pulse dan sensor GSR yang terintegrasi dengan microcontroller arduino, integrasi ini untuk melakukan pengukuran sinyal dari tubuh. Unit software berfungsi untuk mengolah data yang terdiri dari aplikasi user interface, sistem database, dan machine learning. Data yang diterima dari sensor, akan disimpan ke database yang kemudian dilakukan proses pre-processing data, feature scaling, dan klasifikasi data. Proses pre-processing data terdiri dari dua tahapan, yaitu filter data dan filter attribute. Kemudian feature scaling digunakan untuk proses normalisasi. Setelah melalui kedua proses tersebut, data diklasifikasikan menggunakan algoritma KNN, untuk melakukan proses prediksi emosi. Dari hasil penelitian, sistem aplikasi yang dibangun mampu melakukan proses pengukuran sinyal fisiologi dan klasifikasi emosi dengan rata-rata nilai akurasi, presisi, dan recall adalah 76%.

Kata kunci : Aplikasi, Emosi, Sinyal fisiologi, KNN.

Full Text:

Download PDF

References


Ali, M., Al Machot, F., Mosa, A. H., Jdeed, M., Al Machot, E., & Kyamaka, K. (2018). A Globally Generalized Emotion Recognition System Involving Different Physiological Signals. MDPI Journal, 18.

Arduino. (n.d.). Arduino . (Arduino CC) Retrieved June 26, 2019, from https://www.arduino.cc/en/Guide/Introduct.

Axelson, J. (1997). The Microcontroller Idea Book. Madison, USA: Lakeview Research.

Bachynskyi, A. (2018). Emotional State Recognition Based on Physiological Signals. Tartu: UNIVERSITY OF TARTU.

Basu, S., Chakraborty, J., Bag, A., & Aftabuddin, M. (2017). A Review on Emotion Recognition using speech. International Conference on Inventive Comunication and Computional Technologies, 17, 109-114.

Cernian, A., Olteanu, A., Carstoiu, D., & Mares, C. (2017). Mood Detector – On Using Machine Learning to Identify moods and Emotions. International Conference on Control Sysems and Computer Science, 213-216.

Cherry, K. (2019, June 27). The 6 Types of Basic Emotions and Their Effect on Human Behaviour. (verywellmind) Retrieved June 29, 2019, from https://www.verywellmind.com/anoverview-of-the-types-of-emotions4163976

Chopade, C. R. (2015). Text Based Emotion Recognition: A Survey. International Journal of Science and Research, 4(6), 409-414.

Desai, D. (2018). Emotion Recognition using Speech Signal: A Review. International Research Journal of Engineering and Technology (IRJET), 05(04), 1599-1605.

Farnswoth, B. (2018, July 17). What is GSR (Galvanic Skin response) and how does it work? (Imotions) Retrieved July 4, 2019, from https://imotions.com/blog/gsr/

Fernandes, A., Helawar, R., Lokesh, R., Tari, T., & Shahapurkar, A. V. (2014). Determination of Stress using Blood Pressure and Galvanic Skin Response. 165-168.

Fraden, J. (2010). Handbook of Modern Sensors. London: Springer.

Gohrani, K. (2019, November 10). Different Types of Distan. (Medium) Retrieved May 2020, from https://medium.com/@kunal_gohrani/differ ent-types-of-distance-metrics-used-inmachine-learning-e9928c5e26c7

Gohsvarpour, A., Abbasi, A., & Goshvarpour, A. (2017). An accurate emotion recognition system using ECG dan GSR signals and matching pursuit method. Biomedical Journal, 40, 355-368.

Ingale, A. B., & Chaudhari, D. S. (2012). Speech Emotion Recognition. International Jounaal of Soft Computing and Engineering (IJSCE), 2(1), 235-238.

Jack, R. E., Garrod, O. G., & Schyns, P. G. (2014). Dynamic Facial Expressions of Emotion Transmit an Envolving Hierarchy of Signals over Time. United Kingdom: Elseiver Ltd.

Kerkeni, L., Serrestou, Y., Mbarki, M., Raoof, K., Mahjoub, M. A., & Cleder, C. (2018). Automatic Speech Emotion using Machine Learning. In Social Media and Machine Learning. IntechOpen.

Ko, B. C. (2018). A Brief Review of Facial Emotion Recognition Based on Visual Information. MDPI Sensor Journal, 18, 1-20.

Lee, C., Yoo, S., Park, Y., Kim, N., Jeong, K., & Lee, B. (2006). Using Neural Network to Recognize Human Emotions from heart rate variability and skin resistance. Proceeding of the 2006 IEEE, 5523-5525.

Liu, M., Fan, D., Zhang, X., Gong, & Xiaopeng. (2016). Human Emotion Recognition based on GSR signal feature selection and SVM. International Conference on Smart City and System Engineering, 157-160.

Liu, M., Zhang, X., & Gong, X. (2016). Emotion Recognition Based on Galvanic Skin Response Signal Feature Selection and SVM. International Conference on Smart City and System Engineering, 157-160.

M. Talabis, R. M., Miyamoto, I., Kaye, D., McPherson, R., & Martin, J. L. (2014). Information Security Analytics. In Finding Security Insights, Patterns and Anomalies in Big Data. Elsevier Science.

MacGill, M. (2017, November 15). What Should my heart rate be? (Medical News) Retrieved July 04, 2019, from https://www.medicalnewstoday.com/article s/235710.php

McCue, C. (2015). Data Mining and Predictive Analysis. In Intelligence Gathering and Crime Analysis. Butterworth-Heinemann.

Menard, M., Richard, P., Hamdi , H., Dauce, B., & Yamaguchi, T. (2015). Emotion Recognition based on Heart Rate. Proceedings of the 2nd International Conference on Physiological Computing Systems, 26-32.

Morgan, J. (2014, May 13). A Simple Explanation of 'The Internet of Things'. (Forbes) Retrieved June 27, 2019, from https://www.forbes.com/sites/jacobmorgan/ 2014/05/13/simple-explanation-internetthings-that-anyone-canunderstand/#609d2cdf1d09

Myrnoniv, B., Wu, C.-W., Christian, A., Bajo, E., & Tseng, Y.-C. (2017). Analyzing User Emotions via Physiology Signals. Data Science and Pattern Recognition Ubiquitoues International Journal, 1, 11- 24.

Myroniv, B., Wu, C.-W., Ren, Y., Christian, A., Bajo, E., & Tseng, Y.-C. (2017). Analyzing User Emotions via Physiology Signals. Data Science and Pattern Recognition Ubiquitos International, 1, 11-24.

Newman, T. (2018, January 10). The heart: All you need to know. (Medical News) Retrieved July 04, 2019, from https://www.medicalnewstoday.com/article s/320565.php

Nillson, N. J. (2005). Introduction to Machine Learning. Stanford University.

Ragot, M., Martin, N., Em, S., Pallamin, N., & Deverrez, J. M. (2017). Emotion Recognition Using Physiological Signals: Laboratory vs. Wearable Sensors. HAL Archives-ourvertes.

Robin, S. R., Judge, A. T., & Campbell, T. C. (2016). Emotions and Moods. In Organizational Behaviour (pp. 258-297). Harlow, United Kingdom: Pearson Education Limited.

Setyohadi, D. B., Kusrohmaniah, S., Gunawan, S. B., Pranowo, & Prabuwono, A. S. (2018). Galvanic Skin Response Data Classification for Emotion Detection. International Journal of Electrical and Computer Engineering (IJECE), 8(5), 31- 41.

Sharma, M., Kacker, S., & Sharma, M. (2016). A Brief Introductiono and Review on Galvanic Skin Response. International Journal of Medical Research Professionals, 2(06), 13-17.

Shu, L., Xie, J., Yang, M., Li, Z., Li, Z., Liao, D., . . . Yang, X. (2018). A Review of Emotion Recognition Using Physiological Signals. MDPI Journal - Sensors, 1-3. Tamb, N. R., & Khachane, A. (2016). Mood Based E-learning using EEG.

Tarnowski, P., Kolodziej, M., Majkowski, A., & Rak, R. J. (2017). Emotion Recognition using Facial Expressions. International Conference on Computational Science, 1175-1184.

Tarnowski, P., Kolodziej, M., Majkowski, A., & Rak, R. J. (2018). Combined analysis of GSR and EEG signals for emotion recognition. 137-141.

Udovicic, G., Russo, M., Derek, J., & Sikora, M. (2017). Wearable Emotion Recognition based on GSR and PPG Signals. MMHealth, 53-59.

Verma, M. (2017). Working, Operation, and Types of Arduino Microcontroller. International Journal of Engineering Sciences and Research Technology, 6, 155-158.

Widanti, N., Sumanto, B., Rosa, P., & Miftahudin, F. (2015). Stress Level Detection using Heart Rate, Blood Pressure, and GSR dan Stress Therapy by Untilizing Infrared. International Conference an Industrial Instrumentation and Control (ICIC) Journal, 275-279.

Wu, G., & Min Hao, G. L. (2010). The analysis of emotion recognition from GSR based on PSO. International Symposium on Intelligence Processing and Trusted Computing.




DOI: https://doi.org/10.37531/sejaman.v6i2.5891

Refbacks

  • There are currently no refbacks.


Flag Counter

Creative Commons License

S E I K O : Journal of Management & Business is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
 
© All rights reserved 2018. S E I K O : Journal of Management & Business - ISSN (Print) : 2598-831X, ISSN (Online) : 2598-8301.
 

Web
Analytics