Sentiment Analysis of The Most Viewed YouTube Video: Exploring Gender Bias in The Discussion of Women Workers in Indonesia

Rouna Meisda Paoki, Jimmy Moedjahedy

Sari


Isu-isu kekerasan terhadap perempuan dan kelompok rentan, serta penerapan pengarusutamaan gender dan pemberdayaan perempuan, terus menjadi masalah bagi bisnis dan organisasi. Tujuan utama dari penelitian ini adalah untuk menyelidiki sentimen yang diekspresikan oleh netizen atau individu di Indonesia terkait dengan Bias Gender di negara ini, dengan menggunakan lima film yang paling sering dilihat di platform YouTube. Metodologi yang digunakan dalam penelitian ini adalah dengan melakukan analisis sentimen terhadap komentar-komentar yang terkait dengan video-video tersebut, seperti yang telah disebutkan sebelumnya. Komentar-komentar tersebut dianalisis menggunakan Google API, Pandas for Python, dan Natural Language Tool Kit (NLTK). Temuan dari penelitian ini menunjukkan bahwa distribusi balasan dapat dikategorikan sebagai berikut: 53,25% dari tanggapan diklasifikasikan sebagai netral, 31,76% diklasifikasikan sebagai positif, dan 14,99% diklasifikasikan sebagai negatif. Salah satu pendekatan yang memungkinkan untuk penelitian ini adalah dengan menggunakan analisis sentimen dengan menyertakan dan membandingkan beberapa teknik pembelajaran mesin.

 

Kata Kunci: Bias Gender; Analisis Sentimen; Pekerja Wanita; Gender Inequality Index


Teks Lengkap:

PDF

Referensi


Badan Pusat Statistik. (2023). Berita Resmi Statistik 1 Agustus 2023. https://www.bps.go.id/website/materi_ind/materiBrsInd-20230801155718_rev.pdf

Catalyst. (2023, December). Catalyst Transforms Workplaces.

Cristescu, M. P., Nerisanu, R. A., Mara, D. A., & Oprea, S. V. (2022). Using Market News Sentiment Analysis for Stock Market Prediction. Mathematics, 10(22). https://doi.org/10.3390/math10224255

D’Aniello, G., Gaeta, M., & La Rocca, I. (2022). KnowMIS-ABSA: an overview and a reference model for applications of sentiment analysis and aspect-based sentiment analysis. Artificial Intelligence Review, 55(7). https://doi.org/10.1007/s10462-021-10134-9

Denecke, K., & Reichenpfader, D. (2023). Sentiment analysis of clinical narratives: A scoping review. Journal of Biomedical Informatics, 140. https://doi.org/10.1016/j.jbi.2023.104336

Dixon-Fyle, S., Hunt, V. (DBE), Dolan, K., & Prince, S. (2020). Diversity wins: How inclusion matters. McKinsey, May.

Huang, L. (2019). Modern Families: An Interview with UN Women on Progress of the World’s Women 2019–2020: Families in a Changing World. Chicago Policy Review (Online).

Izzaty Shahirah Nor Sham, N., Salleh, R., & Syahirah Syed Sheikh, S. (2021). Women Empowerment and Work-Life Balance of Women Engineers in the Malaysian Energy Sector: A Conceptual Framework. SHS Web of Conferences, 124. https://doi.org/10.1051/shsconf/202112408009

Kurzman, C., Dong, W., Gorman, B., Hwang, K., Ryberg, R., & Zaidi, B. (2019). Women’s Assessments of Gender Equality. Socius, 5. https://doi.org/10.1177/2378023119872387

Lee, T., Good, L., Lipton, B., & Cooper, R. (2022). Women, work and industrial relations in Australia in 2021. Journal of Industrial Relations, 64(3). https://doi.org/10.1177/00221856221099624

Loayza, N., & Trumbic, T. (2021). Women, Business and the Law 2021: Women´s economic empowerment is critical to resilient recovery efforts. World Bank Blog.

Njuki, J., Eissler, S., Malapit, H., Meinzen-Dick, R., Bryan, E., & Quisumbing, A. (2022). A review of evidence on gender equality, women’s empowerment, and food systems. Global Food Security, 33. https://doi.org/10.1016/j.gfs.2022.100622

Novák, J., Benda, P., Šilerová, E., Vaněk, J., & Kánská, E. (2021). Sentiment Analysis in Agriculture. Agris On-Line Papers in Economics and Informatics, 13(1). https://doi.org/10.7160/aol.2021.130109

Novendri, R., Callista, A. S., Pratama, D. N., & Puspita, C. E. (2020). Sentiment Analysis of YouTube Movie Trailer Comments Using Naïve Bayes. Bulletin of Computer Science and Electrical Engineering, 1(1). https://doi.org/10.25008/bcsee.v1i1.5

Ortiz Rodríguez, J., & Pillai, V. K. (2019). Advancing support for gender equality among women in Mexico: Significance of labor force participation. International Social Work, 62(1). https://doi.org/10.1177/0020872817717323

Pichad, S. (2023). Analysing Sentiments for YouTube Comments using Machine Learning. International Journal for Research in Applied Science and Engineering Technology, 11(5). https://doi.org/10.22214/ijraset.2023.51973

Quinlan, J., & VanderBrug, J. (2016). Gender Lens Investing: Uncovering Opportunities for Growth, Returns, and Impact. In Gender Lens Investing.

Rahab, H., Zitouni, A., & Djoudi, M. (2021). SANA: Sentiment analysis on newspapers comments in Algeria. Journal of King Saud University - Computer and Information Sciences, 33(7). https://doi.org/10.1016/j.jksuci.2019.04.012

Singh, R., & Tiwari, A. (2021). YOUTUBE COMMENTS SENTIMENT ANALYSIS. International Journal of Scientific Research in Engineering and Management (IJSREM.

Siscawati, M., Adelina, S., Eveline, R., & Anggriani, S. (2020). Gender Equality and Women Empowerment in The National Development of Indonesia. Journal of Strategic and Global Studies. https://doi.org/10.7454/jsgs.v2i2.1021

Tanesab, F. I., Sembiring, I., & Purnomo, H. D. (2017). Sentiment Analysis Model Based On Youtube Comment Using Support Vector Machine. International Journal of Computer Science and Software Engineering (IJCSSE), 6(8).

Thelwall, M. (2018). Gender bias in sentiment analysis. Online Information Review, 42(1). https://doi.org/10.1108/OIR-05-2017-0139

Wani, A., & Ahmad, M. (2021). WOMEN IN THE WORK PLACE – AN EMPIRICAL ANALYSIS OF THE CHALLENGE OF WORK LOAD. Advancing Women in Leadership Journal, 40(1). https://doi.org/10.21423/awlj-v40.a377




DOI: https://doi.org/10.37531/yum.v7i1.6311

Refbacks

  • Saat ini tidak ada refbacks.


Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional
Web
Analytics Made Easy - StatCounter