Analisis Tingkat Keakuratan Prediksi Harga Saham dengan Metode Nonlinear Auto-Regressive Exogenous Model (NARX) Neural Network Berbasis Data Time Series: Studi Kasus pada Harga Saham PT. Bank Central Tbk. (BBCA)
Sari
Penelitian ini menganalisis tingkat keakuratan prediksi harga saham PT. Bank Central Asia Tbk. (BBCA) menggunakan metode Nonlinear Auto-Regressive Exogenous Model (NARX) Neural Network berbasis data time series. Motivasi penelitian ini didasari oleh keterbatasan metode tradisional dalam memprediksi harga saham secara akurat, terutama dalam kondisi pasar yang volatil. Data penelitian menggunakan data sekunder harga saham BBCA periode Januari 2023 hingga Desember 2024 yang diperoleh dari Yahoo Finance, meliputi 470 data perdagangan harian dengan variabel open price, high price, low price, close price, dan volume perdagangan. Metodologi penelitian menerapkan preprocessing data menggunakan normalisasi min-max scaling, pembagian data menjadi 80% training, 10% validasi, dan 10% testing. Model NARX Neural Network dioptimalkan melalui metode trial-error untuk menentukan kombinasi parameter terbaik meliputi number of delay (1-5), algoritma pelatihan (trainlm, trainbr, trainscg), dan jumlah hidden neuron (1-10). Hasil penelitian menunjukkan bahwa konfigurasi optimal model menggunakan number of delay 4, algoritma Levenberg-Marquardt (trainlm), dan 8 hidden neuron dengan Mean Squared Error (MSE) sebesar 9.834,67. Evaluasi akurasi model menggunakan Mean Absolute Percentage Error (MAPE) menghasilkan nilai 1,018%, yang menurut kriteria Lewis (1982) tergolong highly accurate (MAPE < 10%). Temuan ini mengindikasikan bahwa metode NARX Neural Network efektif untuk prediksi harga saham BBCA dengan tingkat akurasi yang sangat tinggi.
Kata Kunci: NARX Neural Network, Prediksi Harga Saham, BBCA, Time Series Analysis, Mean Absolute Percentage Error.
Teks Lengkap:
PDFReferensi
Alkhatib, K., Khazaleh, H., Alkhazaleh, H. A., Alsoud, A. R., & Abualigah, L. (2022). A new stock price forecasting method using active deep learning approach. Journal of Open Innovation: Technology, Market, and Complexity, 8(2), 96. https://doi.org/10.3390/joitmc8020096
Alkhoshi, R., & Belkasim, S. (2018). Stable stock market prediction using NARX algorithm. Computational Intelligence and Financial Markets, 8(3), 45-52.
Al-Shayea, Q. K. (2017). Neural networks to predict stock market price. World Congress on Engineering and Computer Science, San Fransisco (Vol. 1, pp. 1-7).
Atsalakis, G. S., & Valavanis, K. P. (2009). Surveying stock market forecasting techniques–Part II: Soft computing methods. Expert Systems with Applications, 36(3), 5932-5941. https://doi.org/10.1016/j.eswa.2008.07.006
Ballesteros, M. A. A., & Miranda, E. A. M. (2024). Stock market forecasting using a neural network through fundamental indicators, technical indicators and market sentiment analysis. Computational Economics. https://doi.org/10.1007/s10614-024-10711-4
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer-Verlag New York.
Bodie, Z., Kane, A., & Marcus, A. J. (2018). Investments (11th ed.). McGraw-Hill Education.
Brownlee, J. (2020). Train-test split for evaluating machine learning algorithms. Machine Learning Mastery. Diperoleh dari https://machinelearningmastery.com/train-test-split-for-evaluating-machine-learning-algorithms
Chen, J. (2023). Technical analysis of stocks and trends definition. Investopedia. Retrieved from https://www.investopedia.com/terms/t/technical-analysis-of-stocks-and-trends.asp
Chaudhuri, T. D., & Ghosh, I. (2016). Artificial neural network and time series modeling based approach to forecasting the exchange rate in a multivariate framework. arXiv preprint arXiv:1607.02093. https://doi.org/10.48550/arXiv.1607.02093
Chhajer, P., Shah, M., & Kshirsagar, A. (2022). The applications of artificial neural networks, support vector machines, and long-short term memory for stock market prediction. Decision Analytics Journal, 2, 100015. https://doi.org/10.1016/j.dajour.2021.100015
Dhafer, A. H., Nor, F. M., Hashim, W., Shah, N. R., Bin Khairi, K. F., & Alkawsi, G. (2022). Empirical analysis for stock price prediction using NARX model with exogenous technical indicators. Computational Intelligence and Neuroscience, 2022, 9208640. https://doi.org/10.1155/2022/9208640
Encord. (2024). How to split machine learning datasets: Training, validation, & test sets. Retrieved from https://encord.com/blog/train-val-test-split/
Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6), 989-993. https://doi.org/10.1109/72.329697
Haviluddin, H., & Alfred, R. (2016). Performance of modeling time series using nonlinear autoregressive with exogenous input (NARX) in the network traffic forecasting. 2015 International Conference on Science in Information Technology, 164-168. https://doi.org/10.1109/ICSITech.2015.7407796
Jonathon, T. L. (2013). A Bayesian regularized artificial neural network for stock market forecasting. Expert Systems with Applications, 40(14), 5501-5506. https://doi.org/10.1016/j.eswa.2013.04.013
Kamalov, F. (2020). Forecasting significant stock price changes using neural networks. Neural Computing and Applications, 32(23), 17655-17667. https://doi.org/10.1007/s00521-020-04942-3
Kelley, J., & Hagan, M. T. (2024). Comparison of neural network NARX and NARMAX models for multi-step prediction using simulated and experimental data. Expert Systems with Applications, 237, 121377. https://doi.org/10.1016/j.eswa.2023.121437
Lewis, C. D. (1982). International and business forecasting methods. Butterworths.
Li, G., Kawan, B., Wang, H., & Zhang, H. (2017). Neural-network-based modelling and analysis for time series prediction of ship motion. Ship Technology Research, 64(1), 30-39.
Lin, T., Horne, B. G., Tino, P., & Giles, C. L. (1996). Learning long-term dependencies in NARX recurrent neural networks. IEEE Transactions on Neural Networks, 7(6), 1329-1338. https://doi.org/10.1109/72.548162
Lu, W., Li, J., Li, Y., Sun, A., & Wang, J. (2020). A CNN‐LSTM‐based model to forecast stock prices. Complexity, 2020, 6622927. https://doi.org/10.1155/2020/6622927
Menezes Jr, J. M. P., & Barreto, G. A. (2008). Long-term time series prediction with the NARX network: An empirical evaluation. Neurocomputing, 71(16-18), 3335-3343. https://doi.org/10.1016/j.neucom.2008.01.030
Orimoloye, L. O., Sung, M. C., Ma, T., & Johnson, J. E. (2020). Comparing the effectiveness of deep feedforward neural networks and shallow architectures for predicting stock price indices. Expert Systems with Applications, 139, 112828. https://doi.org/10.1016/j.eswa.2019.112828
Pangestika, Z., & Josaphat, B. P. (2025). Predicting stock price using convolutional neural network and long short term memory (case study: Stock of BBCA). Journal of the Indonesian Mathematical Society, 31(1), 1-12. https://doi.org/10.22342/jims.v31i1.1512
Prechelt, L. (2012). Early stopping — but when? In G. Montavon, G. B. Orr, & K. R. Müller (Eds.), Neural Networks: Tricks of the Trade (pp. 53-67). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35289-8_5
Rojas-Hernández, R., Fernández-Anaya, G., Carrasco-Ochoa, J. A., & Martínez-Trinidad, J. F. (2022). NARX neural networks models for prediction of standardized precipitation index in central Mexico. Atmosphere, 13(8), 1254. https://doi.org/10.3390/atmos13081254
Sedighi, M., Jahangirnia, H., Gharakhani, M., & Farahani Fard, S. (2019). A novel hybrid model for stock price forecasting based on metaheuristics and support vector machine. Data, 4(2), 75. https://doi.org/10.3390/data4020075
Shah, D., Campbell, W., & Zulkernine, F. H. (2020). A comparative study of LSTM and DNN for stock market forecasting. 2018 IEEE International Conference on Big Data, 4148-4155. https://doi.org/10.1109/BigData.2018.8622462
Tandelilin, E. (2017). Pasar modal manajemen portofolio dan investasi. PT Kanisius.
Wang, T., Wang, P., & Yu, M. (2022). Compare CNN and LSTM model to forecast the stock price. Financial Engineering and Risk Management, 5, 44-52. https://doi.org/10.23977/ferm.2022.050607
Wibowo, A., Pujianto, H., Retno, D., & Saputro, S. (2017). Nonlinear autoregressive exogenous model in stock price index's prediction. International Journal of Advanced Computer Science and Applications, 8(10), 396-399.
DOI: https://doi.org/10.37531/yum.v8i3.9446
Refbacks
- Saat ini tidak ada refbacks.

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional